3.105 \(\int \cos (c+d x) (a+a \sec (c+d x))^3 (A+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=145 \[ \frac {a^3 (6 A+5 C) \tanh ^{-1}(\sin (c+d x))}{2 d}-\frac {(6 A-5 C) \tan (c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{6 d}+3 a^3 A x+\frac {5 a^3 C \tan (c+d x)}{2 d}-\frac {(3 A-C) \tan (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{3 a d}+\frac {A \sin (c+d x) (a \sec (c+d x)+a)^3}{d} \]

[Out]

3*a^3*A*x+1/2*a^3*(6*A+5*C)*arctanh(sin(d*x+c))/d+A*(a+a*sec(d*x+c))^3*sin(d*x+c)/d+5/2*a^3*C*tan(d*x+c)/d-1/3
*(3*A-C)*(a^2+a^2*sec(d*x+c))^2*tan(d*x+c)/a/d-1/6*(6*A-5*C)*(a^3+a^3*sec(d*x+c))*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.25, antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {4087, 3917, 3914, 3767, 8, 3770} \[ \frac {a^3 (6 A+5 C) \tanh ^{-1}(\sin (c+d x))}{2 d}-\frac {(6 A-5 C) \tan (c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{6 d}-\frac {(3 A-C) \tan (c+d x) \left (a^2 \sec (c+d x)+a^2\right )^2}{3 a d}+3 a^3 A x+\frac {5 a^3 C \tan (c+d x)}{2 d}+\frac {A \sin (c+d x) (a \sec (c+d x)+a)^3}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2),x]

[Out]

3*a^3*A*x + (a^3*(6*A + 5*C)*ArcTanh[Sin[c + d*x]])/(2*d) + (A*(a + a*Sec[c + d*x])^3*Sin[c + d*x])/d + (5*a^3
*C*Tan[c + d*x])/(2*d) - ((3*A - C)*(a^2 + a^2*Sec[c + d*x])^2*Tan[c + d*x])/(3*a*d) - ((6*A - 5*C)*(a^3 + a^3
*Sec[c + d*x])*Tan[c + d*x])/(6*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3914

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[a*c*x, x]
 + (Dist[b*d, Int[Csc[e + f*x]^2, x], x] + Dist[b*c + a*d, Int[Csc[e + f*x], x], x]) /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && NeQ[b*c + a*d, 0]

Rule 3917

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> -Simp[(b*
d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1))/(f*m), x] + Dist[1/m, Int[(a + b*Csc[e + f*x])^(m - 1)*Simp[a*c*m
 + (b*c*m + a*d*(2*m - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && Gt
Q[m, 1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rule 4087

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dis
t[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*(A*(m + n + 1) + C*n)*Csc[e +
f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2
^(-1)] || EqQ[m + n + 1, 0])

Rubi steps

\begin {align*} \int \cos (c+d x) (a+a \sec (c+d x))^3 \left (A+C \sec ^2(c+d x)\right ) \, dx &=\frac {A (a+a \sec (c+d x))^3 \sin (c+d x)}{d}+\frac {\int (a+a \sec (c+d x))^3 (3 a A-a (3 A-C) \sec (c+d x)) \, dx}{a}\\ &=\frac {A (a+a \sec (c+d x))^3 \sin (c+d x)}{d}-\frac {(3 A-C) \left (a^2+a^2 \sec (c+d x)\right )^2 \tan (c+d x)}{3 a d}+\frac {\int (a+a \sec (c+d x))^2 \left (9 a^2 A-a^2 (6 A-5 C) \sec (c+d x)\right ) \, dx}{3 a}\\ &=\frac {A (a+a \sec (c+d x))^3 \sin (c+d x)}{d}-\frac {(3 A-C) \left (a^2+a^2 \sec (c+d x)\right )^2 \tan (c+d x)}{3 a d}-\frac {(6 A-5 C) \left (a^3+a^3 \sec (c+d x)\right ) \tan (c+d x)}{6 d}+\frac {\int (a+a \sec (c+d x)) \left (18 a^3 A+15 a^3 C \sec (c+d x)\right ) \, dx}{6 a}\\ &=3 a^3 A x+\frac {A (a+a \sec (c+d x))^3 \sin (c+d x)}{d}-\frac {(3 A-C) \left (a^2+a^2 \sec (c+d x)\right )^2 \tan (c+d x)}{3 a d}-\frac {(6 A-5 C) \left (a^3+a^3 \sec (c+d x)\right ) \tan (c+d x)}{6 d}+\frac {1}{2} \left (5 a^3 C\right ) \int \sec ^2(c+d x) \, dx+\frac {1}{2} \left (a^3 (6 A+5 C)\right ) \int \sec (c+d x) \, dx\\ &=3 a^3 A x+\frac {a^3 (6 A+5 C) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {A (a+a \sec (c+d x))^3 \sin (c+d x)}{d}-\frac {(3 A-C) \left (a^2+a^2 \sec (c+d x)\right )^2 \tan (c+d x)}{3 a d}-\frac {(6 A-5 C) \left (a^3+a^3 \sec (c+d x)\right ) \tan (c+d x)}{6 d}-\frac {\left (5 a^3 C\right ) \operatorname {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{2 d}\\ &=3 a^3 A x+\frac {a^3 (6 A+5 C) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {A (a+a \sec (c+d x))^3 \sin (c+d x)}{d}+\frac {5 a^3 C \tan (c+d x)}{2 d}-\frac {(3 A-C) \left (a^2+a^2 \sec (c+d x)\right )^2 \tan (c+d x)}{3 a d}-\frac {(6 A-5 C) \left (a^3+a^3 \sec (c+d x)\right ) \tan (c+d x)}{6 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 6.48, size = 1250, normalized size = 8.62 \[ \text {result too large to display} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2),x]

[Out]

(3*A*x*Cos[c + d*x]^5*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2))/(4*(A + 2*C + A*Cos[
2*c + 2*d*x])) + ((-6*A - 5*C)*Cos[c + d*x]^5*Log[Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2]]*Sec[c/2 + (d*x)/2]^
6*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2))/(8*d*(A + 2*C + A*Cos[2*c + 2*d*x])) + ((6*A + 5*C)*Cos[c + d
*x]^5*Log[Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2]]*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*(A + C*Sec[c +
d*x]^2))/(8*d*(A + 2*C + A*Cos[2*c + 2*d*x])) + (A*Cos[d*x]*Cos[c + d*x]^5*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c +
 d*x])^3*(A + C*Sec[c + d*x]^2)*Sin[c])/(4*d*(A + 2*C + A*Cos[2*c + 2*d*x])) + (A*Cos[c]*Cos[c + d*x]^5*Sec[c/
2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2)*Sin[d*x])/(4*d*(A + 2*C + A*Cos[2*c + 2*d*x])) +
(C*Cos[c + d*x]^5*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2)*Sin[(d*x)/2])/(24*d*(A +
2*C + A*Cos[2*c + 2*d*x])*(Cos[c/2] - Sin[c/2])*(Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2])^3) + (Cos[c + d*x]^5
*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2)*(5*C*Cos[c/2] - 4*C*Sin[c/2]))/(24*d*(A +
2*C + A*Cos[2*c + 2*d*x])*(Cos[c/2] - Sin[c/2])*(Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2])^2) + (Cos[c + d*x]^5
*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2)*(3*A*Sin[(d*x)/2] + 11*C*Sin[(d*x)/2]))/(1
2*d*(A + 2*C + A*Cos[2*c + 2*d*x])*(Cos[c/2] - Sin[c/2])*(Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2])) + (C*Cos[c
 + d*x]^5*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2)*Sin[(d*x)/2])/(24*d*(A + 2*C + A*
Cos[2*c + 2*d*x])*(Cos[c/2] + Sin[c/2])*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2])^3) + (Cos[c + d*x]^5*Sec[c/2
 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2)*(-5*C*Cos[c/2] - 4*C*Sin[c/2]))/(24*d*(A + 2*C + A
*Cos[2*c + 2*d*x])*(Cos[c/2] + Sin[c/2])*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2])^2) + (Cos[c + d*x]^5*Sec[c/
2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*(A + C*Sec[c + d*x]^2)*(3*A*Sin[(d*x)/2] + 11*C*Sin[(d*x)/2]))/(12*d*(A
+ 2*C + A*Cos[2*c + 2*d*x])*(Cos[c/2] + Sin[c/2])*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2]))

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 151, normalized size = 1.04 \[ \frac {36 \, A a^{3} d x \cos \left (d x + c\right )^{3} + 3 \, {\left (6 \, A + 5 \, C\right )} a^{3} \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (6 \, A + 5 \, C\right )} a^{3} \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (6 \, A a^{3} \cos \left (d x + c\right )^{3} + 2 \, {\left (3 \, A + 11 \, C\right )} a^{3} \cos \left (d x + c\right )^{2} + 9 \, C a^{3} \cos \left (d x + c\right ) + 2 \, C a^{3}\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

1/12*(36*A*a^3*d*x*cos(d*x + c)^3 + 3*(6*A + 5*C)*a^3*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*(6*A + 5*C)*a^3
*cos(d*x + c)^3*log(-sin(d*x + c) + 1) + 2*(6*A*a^3*cos(d*x + c)^3 + 2*(3*A + 11*C)*a^3*cos(d*x + c)^2 + 9*C*a
^3*cos(d*x + c) + 2*C*a^3)*sin(d*x + c))/(d*cos(d*x + c)^3)

________________________________________________________________________________________

giac [A]  time = 0.43, size = 219, normalized size = 1.51 \[ \frac {18 \, {\left (d x + c\right )} A a^{3} + \frac {12 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1} + 3 \, {\left (6 \, A a^{3} + 5 \, C a^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (6 \, A a^{3} + 5 \, C a^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (6 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 15 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 12 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 40 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 6 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 33 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

1/6*(18*(d*x + c)*A*a^3 + 12*A*a^3*tan(1/2*d*x + 1/2*c)/(tan(1/2*d*x + 1/2*c)^2 + 1) + 3*(6*A*a^3 + 5*C*a^3)*l
og(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(6*A*a^3 + 5*C*a^3)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(6*A*a^3*tan(
1/2*d*x + 1/2*c)^5 + 15*C*a^3*tan(1/2*d*x + 1/2*c)^5 - 12*A*a^3*tan(1/2*d*x + 1/2*c)^3 - 40*C*a^3*tan(1/2*d*x
+ 1/2*c)^3 + 6*A*a^3*tan(1/2*d*x + 1/2*c) + 33*C*a^3*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)/d

________________________________________________________________________________________

maple [A]  time = 1.85, size = 152, normalized size = 1.05 \[ \frac {a^{3} A \sin \left (d x +c \right )}{d}+\frac {5 C \,a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2 d}+3 a^{3} A x +\frac {3 A \,a^{3} c}{d}+\frac {11 a^{3} C \tan \left (d x +c \right )}{3 d}+\frac {3 A \,a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+\frac {3 C \,a^{3} \sec \left (d x +c \right ) \tan \left (d x +c \right )}{2 d}+\frac {A \,a^{3} \tan \left (d x +c \right )}{d}+\frac {C \,a^{3} \tan \left (d x +c \right ) \left (\sec ^{2}\left (d x +c \right )\right )}{3 d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2),x)

[Out]

a^3*A*sin(d*x+c)/d+5/2/d*C*a^3*ln(sec(d*x+c)+tan(d*x+c))+3*a^3*A*x+3/d*A*a^3*c+11/3*a^3*C*tan(d*x+c)/d+3/d*A*a
^3*ln(sec(d*x+c)+tan(d*x+c))+3/2/d*C*a^3*sec(d*x+c)*tan(d*x+c)+1/d*A*a^3*tan(d*x+c)+1/3/d*C*a^3*tan(d*x+c)*sec
(d*x+c)^2

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 177, normalized size = 1.22 \[ \frac {36 \, {\left (d x + c\right )} A a^{3} + 4 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} C a^{3} - 9 \, C a^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 18 \, A a^{3} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 6 \, C a^{3} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 12 \, A a^{3} \sin \left (d x + c\right ) + 12 \, A a^{3} \tan \left (d x + c\right ) + 36 \, C a^{3} \tan \left (d x + c\right )}{12 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^3*(A+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

1/12*(36*(d*x + c)*A*a^3 + 4*(tan(d*x + c)^3 + 3*tan(d*x + c))*C*a^3 - 9*C*a^3*(2*sin(d*x + c)/(sin(d*x + c)^2
 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 18*A*a^3*(log(sin(d*x + c) + 1) - log(sin(d*x + c) -
1)) + 6*C*a^3*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 12*A*a^3*sin(d*x + c) + 12*A*a^3*tan(d*x + c)
+ 36*C*a^3*tan(d*x + c))/d

________________________________________________________________________________________

mupad [B]  time = 2.67, size = 199, normalized size = 1.37 \[ \frac {A\,a^3\,\sin \left (c+d\,x\right )}{d}+\frac {6\,A\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {6\,A\,a^3\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {5\,C\,a^3\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {A\,a^3\,\sin \left (c+d\,x\right )}{d\,\cos \left (c+d\,x\right )}+\frac {11\,C\,a^3\,\sin \left (c+d\,x\right )}{3\,d\,\cos \left (c+d\,x\right )}+\frac {3\,C\,a^3\,\sin \left (c+d\,x\right )}{2\,d\,{\cos \left (c+d\,x\right )}^2}+\frac {C\,a^3\,\sin \left (c+d\,x\right )}{3\,d\,{\cos \left (c+d\,x\right )}^3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^3,x)

[Out]

(A*a^3*sin(c + d*x))/d + (6*A*a^3*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (6*A*a^3*atanh(sin(c/2 + (d
*x)/2)/cos(c/2 + (d*x)/2)))/d + (5*C*a^3*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (A*a^3*sin(c + d*x)
)/(d*cos(c + d*x)) + (11*C*a^3*sin(c + d*x))/(3*d*cos(c + d*x)) + (3*C*a^3*sin(c + d*x))/(2*d*cos(c + d*x)^2)
+ (C*a^3*sin(c + d*x))/(3*d*cos(c + d*x)^3)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ a^{3} \left (\int A \cos {\left (c + d x \right )}\, dx + \int 3 A \cos {\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx + \int 3 A \cos {\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}\, dx + \int A \cos {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int C \cos {\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}\, dx + \int 3 C \cos {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int 3 C \cos {\left (c + d x \right )} \sec ^{4}{\left (c + d x \right )}\, dx + \int C \cos {\left (c + d x \right )} \sec ^{5}{\left (c + d x \right )}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))**3*(A+C*sec(d*x+c)**2),x)

[Out]

a**3*(Integral(A*cos(c + d*x), x) + Integral(3*A*cos(c + d*x)*sec(c + d*x), x) + Integral(3*A*cos(c + d*x)*sec
(c + d*x)**2, x) + Integral(A*cos(c + d*x)*sec(c + d*x)**3, x) + Integral(C*cos(c + d*x)*sec(c + d*x)**2, x) +
 Integral(3*C*cos(c + d*x)*sec(c + d*x)**3, x) + Integral(3*C*cos(c + d*x)*sec(c + d*x)**4, x) + Integral(C*co
s(c + d*x)*sec(c + d*x)**5, x))

________________________________________________________________________________________